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Abstract: Today, air quality is one of the global concerns that governments are facing. One of the
main air pollutants is the particulate matter (PM) which affects human health. This article presents
the modeling of a purification system by means of negative air ions (NAIs) for air pollutant removal,
using computational intelligence methods. The system uses a high-voltage booster output to ionize
air molecules from stainless steel electrodes; its particle-capturing efficiency reaches up to 97%. With
two devices (5 cm × 2 cm × 2.5 cm), 2 trillion negative ions are produced per second, and the
particulate matter (PM 2.5) can be reduced from 999 to 0 mg/m3 in a period of approximately 5 to
7 minutes (in a 40 cm × 40 cm × 40 cm acrylic chamber). This negative ion generator is a viable and
sustainable alternative to reduce polluting emissions, with beneficial effects on human health.

Keywords: environmental pollution; air purification; negative ion generators; particulate matter

1. Introduction

Both developing and developed world cities are at a crossroads in making the right
decisions to ensure a sustainable future [1]. The increasing city pollution levels and their
severe effects on human health demand immediate action from governments to combat
the consequences of human exposure to low-quality air [2]. Studies have shown that
environmental pollution through particulate matter causes different health problems such
as respiratory and heart diseases [3–9].

Special attention has been paid to particles with an aerodynamic diameter of 2.5 µm
(PM 2.5), given their chemical composition and the threat to produce lung diseases [10].
Consequently, PM 2.5 has become a source of significant concern worldwide [11]. The work
of Cavalcante et al. indicates that the composition of particulate material varies according
to the emission source [12]. Furthermore, the studies of Ramanathan and Feng, Ventura
et al., and Cavalcante et al. show that the presence of this pollutant in the atmosphere
causes a variety of impacts on vegetation, the environment, and human health [2,11,13].

Different techniques and applications have recently been studied to solve air purifica-
tion problems, especially in indoor spaces [14]. Techniques such as semiconductor photo-
catalysis [15–17] and oxidation with ozone [18] stand out. There is also filtration [19,20],
use of adsorbents [21], plasma [22], ultraviolet light [23], generation of ions and plasma [24],
among others. Alternative filtration technologies based on electrostatic precipitators or
negative ion generators have gotten more attention in the academic field due to a lower
noise level, lower electricity consumption, lower maintenance cost, and higher cleaning
energy efficiency [25].

Regarding the use of air ionization for removing polluting particles, the use of Corona
Effect Discharge technology is highlighted [26,27]. Indoor air enhancement with negative
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ions provides air purification results with superior efficiencies [28,29]. The research con-
ducted by Nadali et al. [14] concluded that negative ions charge particles by producing a
strong electric field that causes movement of charged particles towards interior surfaces;
these particles finally settle on the surfaces of the walls and the floor. Guo et al. [30] demon-
strated that particulate matter (PM 2.5) in a closed glass chamber (5086 cm3) decreases
rapidly from 999 to 0 µg/m3 in 80 s under an operating TENG device frequency of 0.25 Hz.
Sawant et al. [31] showed that the negative ion system removed 93% to 97% of the fog
or smoke particles in 6 min in a glass chamber (60 cm × 30 cm × 40 cm). Additionally,
Pushpawela et al. [32] highlight the use of negative ions for removing fine PM 2.5-type
particles and eliminating cigarette smoke [28].

This article presents the modeling of a system for air purification through the genera-
tion of negative ions to remove PM 2.5. For this, experimental data were obtained from a
test system with conditions closer to an indoor pollution reduction environment. Then, the
data were processed through three computational intelligence systems: Artificial Neural
Networks (ANNs), K-Nearest Neighbors (k-NN), or K-neighbors and Vector Support Ma-
chine (VSM). These three methods were implemented to identify the computational model
that better represents the behavior of the negative ions in the air purification process in the
presence of three different pollutants (gasoline, cigarette smoke, and incense).

2. Materials and Methods

This research studies the effect of negative ions applied to an enclosed environ-
ment to identify the level of air decontamination from three types of pollutants. The
tests were conducted in an unventilated transparent acrylic chamber of size 6400 cm3

(L ×W × H = 40 cm × 40 cm × 40 cm), with the pollutant source, the negative ion gener-
ator, and a PM2.5 concentration sensor contained inside the chamber. The obtained data
were processed and analyzed to compare the computational models’ performance that
allows estimating the operation of an ionization air purification system.

Figure 1 describes the framework of the employed methodology. The first stage
involves the design, simulation, and prototyping of the negative air ionizing system. Then,
an experimental design and test setup are proposed for data capture. After the data
recollection, the preprocessing activities involve exploring, correcting, and normalizing the
database and the division into training and validation sets. The modeling stage intends
to train the selected algorithms (ANN, KNN, SVM) with the training data to obtain a
suitable process model. The last stage involves evaluating the models with the testing data,
calculating the estimation error, and analyzing the results.
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2.1. Air Purification System through Negative Ions

Air ionizers are a kind of air purifier that is based on the generation of ions by applying
an electric field between two metal electrodes of unequal curvature radius. The ions are
accelerated by the electric field and, thanks to the collisions of neutral ions, the momentum
is transferred from the ions to the neutral molecules, thus creating an ionic effect that can
be used to purify the air: the dust and the particles suspended in the ambient air collect the
electrons as they cross the discharge area. These negatively charged particles then settle on
grounded surfaces. Air ionizers are a kind of air purifier based on negative ion generation
by applying an electric field between two metal electrodes of unequal curvature radius.
The electric field accelerates the ions and, thanks to the collisions with neutral ions, the
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momentum is transferred from the ions to the neutral molecules, thus creating an ionic
effect that can be used to purify the air: the dust and the particles suspended in the ambient
air collect the electrons as they cross the discharge area. These negatively charged particles
then settle on grounded surfaces.

Figure 2 presents the air purification process by means of negative ions. A mix of
air and particulate matter of 2.5 microns (PM 2.5) pollutes the environment in the figure.
Contaminated air enters in contact with negative ions through stainless steel needles
(electrodes to favor the ionization), and the separation of purified air and particulate matter
occurs as previously described. Negative ionization has been widely used to clean indoor
air, with several commercial devices available in the market [33]. However, questions
remain about the impacts of these cleaning devices on public health due to their high ozone
emission levels [33] and their overall effectiveness as purification systems [34].
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The generation of negative ions is favored by the so-called “Corona Effect” [33]. When
a high negative voltage is applied to a conductor or electrode, and the generated electric
field is high enough, a corona discharge occurs [12,13]. If a charged conductor or electrode
has a type of needle with a sharp tip, the electric field around the tip will be significantly
higher than elsewhere, and the air near the electrode can ionize and generate negatively
charged particles [34]. The intensity of the corona discharge depends on the shape and size
of the conductors and the applied voltage. An irregularly shaped conductor, especially
with a sharp tip, results in more corona discharge than a smooth conductor [34]. Large-
diameter conductors produce a lower corona discharge than small-diameter conductors;
the higher the applied voltage, the more negative ions are generated [34]. The closer the
distance to the corona point, the higher the detected concentration of negative ions since
the continuous generation of negative particles by corona discharge is related to a chain
reaction process called electron avalanche [33]. This process requires the design of a voltage
multiplication system, which is described below.

2.1.1. Design of Voltage Multiplier

The ion generation system requires high voltage levels, usually produced with a
voltage multiplier scheme. The Cockcroft–Walton cascade circuit is a high voltage generator,
where the application of an AC voltage level at the input produces a higher DC voltage level
at the output [35]. These circuit configurations can lead to high voltages from relatively low
input values, and they are lighter and cheaper than transformers. The voltage multiplier
system is divided into stages. Each stage consists of two diodes and two capacitors, plus an
alternating voltage input. The operating principle of this system is the successive charging
of capacitors due to the diode-cascade enabling. Each diode presents a voltage loss given
by the technical characteristics of the component, obtaining at the output of each stage
twice the input voltage minus the loss value. The output voltage of each stage becomes the
input for the next one. Figure 3 illustrates the selected configuration.
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Using Kirchoff’s laws for the analysis of voltage multiplier circuits as described in
Figure 3, it can be verified that:

Vo = −nVi, RMS (1)

where Vo is the output voltage of the circuit, n is the number of multiplication stages, and
Vi, RMS denotes the effective value of the input voltage applied to the circuit [35]. The
design calculations for a voltage multiplier, as shown in Figure 3, result in a capacitor
of 100 nf, a 1N4007 rectifier diode, and an input voltage of 110 volts AC. The designed
system is tested in simulation, and Proteus software is used to identify the system’s output
response and validate the voltage levels.

Figure 4 presents the simulated response of the voltage elevation system for the gener-
ation of negative ions. It shows the descending curve generated as the voltage circulates
through the voltage multiplier stages until it reaches the stability point corresponding
to −7500 volts DC. In this way, the negative ions required for the purification process
are generated.

Sustainability 2021, 13, x FOR PEER REVIEW 4 of 14 
 

multiplier system is divided into stages. Each stage consists of two diodes and two capac-
itors, plus an alternating voltage input. The operating principle of this system is the suc-
cessive charging of capacitors due to the diode-cascade enabling. Each diode presents a 
voltage loss given by the technical characteristics of the component, obtaining at the out-
put of each stage twice the input voltage minus the loss value. The output voltage of each 
stage becomes the input for the next one. Figure 3 illustrates the selected configuration. 

 
Figure 3. Voltage multiplier circuit. 

Using Kirchoff’s laws for the analysis of voltage multiplier circuits as described in 
Figure 3, it can be verified that: 𝑉 = −𝑛𝑉,ோெௌ (1) 

where Vo is the output voltage of the circuit, n is the number of multiplication stages, and 𝑉,ோெௌ denotes the effective value of the input voltage applied to the circuit [35]. The de-
sign calculations for a voltage multiplier, as shown in Figure 3, result in a capacitor of 100 
nf, a 1N4007 rectifier diode, and an input voltage of 110 volts AC. The designed system is 
tested in simulation, and Proteus software is used to identify the system’s output response 
and validate the voltage levels. 

Figure 4 presents the simulated response of the voltage elevation system for the gen-
eration of negative ions. It shows the descending curve generated as the voltage circulates 
through the voltage multiplier stages until it reaches the stability point corresponding to 
−7500 volts DC. In this way, the negative ions required for the purification process are 
generated. 

 
Figure 4. Response of the voltage multiplier system. 

The designed voltage multiplier circuit is prototyped, with stainless steel emitting 
needles (electrodes) used as an interface between the electronic circuit and the environ-
ment to transfer the generated negative ions. The system achieves a voltage increase of 
441 V per cycle, leading to an output of −7500 V at 10 mA, with 10 trillion ions per second 
transferred to the environment through the emitting needles arranged at the circuit’s out-
put. 
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The designed voltage multiplier circuit is prototyped, with stainless steel emitting
needles (electrodes) used as an interface between the electronic circuit and the environment
to transfer the generated negative ions. The system achieves a voltage increase of 441 V per
cycle, leading to an output of−7500 V at 10 mA, with 10 trillion ions per second transferred
to the environment through the emitting needles arranged at the circuit’s output.

2.1.2. Experimental Setup and Data Collection

The experimental setup looks to generate data on the effect of negative ions applied
inside a 6400 cm3 cubic-shaped container with the electrodes of the voltage multiplier
system in contact with the container’s atmosphere. In this system, the input air is contami-
nated with pollutants such as gasoline, cigarettes, and incense; these mostly contain PM
2.5 particles and volatile organic components (VOC), namely:

• Gasoline: carbon dioxide, nitrogen oxide, carbon monoxide, and hydrocarbon molecules;
• Cigarette: nicotine, tar, arsenic, lead, polyaromatic hydrocarbons;
• Incense: carbon monoxide, sulfur dioxide, nitrogen oxide, and formaldehyde.
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This air is brought into contact with the negative ions generated through the electric
field produced from the high output voltage in the emitting needles (electrodes). In this way,
the contaminating particles bind with the negative ions, taking an excessive weight and
adhering to the test surface. Negative ions also cause particles to be attracted to stainless
steel needles and the ion-generating electrodes to produce a high density of negative ions
(up to 20 trillion ions per second, according to [36]) in two sets used for testing. As a result,
cleaner and more purified air remains in the chamber atmosphere. During this process also
takes place the measurement of the quantity of the generated ions, the concentration of
particulate matter suspended in the air with a diameter less than 2.5 microns (PM 2.5), the
concentration of volatile organic compounds (TVOC), the concentration of formaldehyde
or methanal (HCHO), RH and the temperature. These variables represent the required
experimental data to generate the computational models representing the process.

2.2. Computational Modeling of the Effects of Ionization in the Reduction of PM 2.5 Particles

This work claims to obtain computational models from the experimental data of
the PM 2.5 concentration levels in a test system of air purification with negative ions,
applying pollutants such as gasoline, cigarettes, and incense. We want to represent system
behavior through the exploration of three computational modeling algorithms, namely,
Artificial Neural Networks (ANN), K-Nearest Neighbors (KNN), and Vector Support
Machine (SVM).

2.2.1. Artificial Neural Networks (ANN)

An ANN is made up of many interconnected units called neurons, which have a
certain natural tendency to learn from the information in the outside world [37]. This type
of network provides solutions to specific problems using a training process. The network
learns from its errors through training, and a model is obtained to describe the studied
phenomenon as accurately as possible [38].

ANN models are used as very powerful machine learning algorithms for time series
prediction of different engineering applications. The ANN model consists of an input layer,
hidden layers, and an output layer. Each hidden layer has weights and skew parameters
to manage neurons. An activation function is used to transfer the data from the hidden
layers to the output layer. Learning algorithms are employed to select the weights within
the neural network structure. The weight selection is based on performance measurements
such as the mean square error (MSE).

2.2.2. The K-Nearest Neighbors (KNN) Model

The KNN algorithm is one of the traditional machine learning algorithms used for
data classification [39]. KNN algorithms use K neighbor values to find the closest point
between objects. The K value is used to find the closest points in the feature vectors, and
the value must be unique. In this research’s algorithm, the Euclidean distance function
(Di) was applied to find the closest neighbor in the feature vector, where x1, x2, y1, and y2
represent the input data variables.

Di =

√
(x1 − x2)

2 − (y1 − y2)
2 (2)

2.2.3. Vector Support Machine (SVM)

The SVM is a learning method with theoretical background in statistical learning
theory [40], originally developed to perform classification tasks. However, it has been
widely used to solve regression problems with a Support Regression Machine (SVR)
method. The SVM-produced model depends on a subset of the training data because
the cost function to build the model only considers the training points that are beyond
a defined margin value. Similarly, the model produced by the SVR only depends on a
subset of the training data because the cost function to build the model ignores any training
datum that is close (within an ε threshold) to the model’s prediction.
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2.2.4. Model Performance Measuring

Performance measurement approaches, such as Root Mean Square Error (RMSE) and
Mean Absolute Error MAE were applied to evaluate the ability of the proposed models
to predict the decrease in the PM 2.5 concentration due to the effect of the negative ions
on the test environment. The RMSE is calculated from the sum of the individual squared
errors. The MAE involves the sum of the errors’ magnitudes (absolute values) to obtain
the ‘total error’ divided by the number of errors [41]. The statistical expressions used are
defined as follows:

• Root Mean Square Error (RMSE):

RMSE =

√√√√ N

∑
i=1

(y− ŷ)2

N
(3)

• Mean Absolute Error (MAE):

MAE =
N

∑
i=1

|y− ŷ|2

N
(4)

Variable y represents the observed experimental data, ŷ represents the data estimated
by the model, and N denotes the total amount of data.

3. Results
3.1. Factorial Design of the Experiment

A 2k factorial design of experiments was performed with the Minitab software to
determine the impact of the variables affecting the air purification process through neg-
ative ions. Factorial designs are helpful in experiments that include several variables
to study the overall effect on a particular response. The 2k factorial design is the most
widely used because the factors have only two levels, quantitative or qualitative, and k
represents the number of factors to analyze [42]. This design allows exploring a chosen
area of the experimental domain; it also allows finding a promising direction for further
optimization [43].

The selected experimental design corresponds to the 2k series which has the factors
Ions, Gasoline, Cigarette, and Incense as independent variables. Each one is run at two
levels. This design is called a 24 factorial design. The main objective is to evaluate the
impact of these factors on the amount of particulate matter (PM 2.5), HCHO, and TVOC
present in the environment. The levels of the factors are called low and high. In this case,
the level selection indicates that it is applied (high, value 1), or that the factor is not applied
(low, value −1). The 2k factorial design requires a reliability percentage score over 60% to
consider the effects of the factors in the output as significant.

After processing the data for the 2k factorial design of experiments using the Minitab
software, a reliability of 77.04% was obtained for the influence of the factors on PM 2.5. On
the other hand, the reliability of the pollutant measuring tests for HCHO (38.97%) and TVOC
(58.05%) scored under the significance threshold. The low level of reliability for HCHO and
TVOC is attributed to the small number of repetitions in the experiment (considering that
human error in the sampling is minimized with a higher number of repetitions). Figure 5
illustrates the impacts of the presence (1) and absence (−1) of each factor on the concentration
of PM 2.5 pollutant, measured in µg/m3, from the 2k factorial design.

It is possible to determine that particulate matter decreases when negative ions are
present in the environment (Figure 5a). For cigarette (Figure 5b) and gasoline (Figure 5d)
pollutants, the steep variation indicates a significant impact on the concentration of PM
2.5. Meanwhile, the incense (Figure 5c) increases the concentration of PM 2.5, but the
change is not as significant as the other contamination sources. This behavior shows the
profound impact that the generation of negative ions offers to decrease PM 2.5 in the test
environment and highlights their role as a reducing agent for this type of pollutant.
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Figure 5. The graphs depict the average maximum value of PM 2.5 concentration (µg/m3) in the
presence (1) and absence (−1) of each experimental factor (ions, cigarette, incense, or gasoline). Each
graph is a discrete representation of a pair of points in a two-dimensional coordinated system with
values from the factorial experimental design. The solid line is drawn to accentuate the variation of
those maximum values of PM2.5 in each case.

On the other hand, Figures 6–8 show the variation in the concentration level of the
particulate material PM 2.5 in the presence of each pollutant independently, and the effect
of increasing the concentration of negative ions.
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Figure 6. Concentration of PM 2.5 caused by the contaminant Cigarette (red) and the effect of the
presence of negative ions (blue).
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Figure 7. Concentration of PM 2.5 caused by the contaminant Incense (red) and the effect of the
presence of negative ions (blue).
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Figure 8. Concentration of PM 2.5 particulate material caused by the contaminant Gasoline (red) and
the effect of the presence of negative ions (blue).

For all pollutants, the PM 2.5 concentration reached the sensor’s maximum measure-
ment saturation level (around 1000 µg/m3), although for gasoline, it does so in half the
time it takes for cigarettes and incense. Once this level of saturation is reached, the negative
ion generation system comes into action, and the concentration of PM 2.5 decreases, taking
between 4 and 5 min to reach zero levels.

These results are in line with Sawant et al. [31], who, using a negative ion system, elim-
inated between 93% and 97% of the cigarette smoke particles in 6 min in an unventilated
glass container of 7200 cm3 (L ×W × H = 60 cm × 30 cm × 40 cm). In our tests, the reduc-
tion of PM 2.5 particles due to cigarette smoke takes around five minutes to reach 0 levels
of concentration (Figure 6), for a volume of 6400 cm3. However, there are better reported
rates of PM 2.5 reduction due to negative ion generation, using more advanced techniques
like TriboElectric Negative Generation (TENG) devices. Guo et al. [30] demonstrated that
particulate matter (PM 2.5) in a closed glass chamber (5086 cm3) decreases rapidly from
999 to 0 µg/m3 in 80 s under an operating TENG device frequency of 0.25 Hz.

3.2. Comparison of the Obtained Computational Models

The experimental data were processed using the MATLAB 2020 software tool Algo-
rithms which was implemented to generate computational models that allow estimating
the reduction in the concentration of PM 2.5 from the presence of negative ions for each of
the pollutants analyzed. In each case, the following techniques were used: artificial neural
network (ANN), K-Nearest Neighbors (KNN), and Vector Support Machine (SVM).

The simulation of the responses was executed using a computer system with an i5
processor and 8 GB RAM to process all the required tasks. The data were normalized to
favor the performance of the computational methods. Each model was identified using
70% of the data for training and the remaining 30% for validation.

Figures 9–11 show the comparison among the experimental data and the obtained
computational models from each technique to estimate the concentration of PM 2.5 in
the presence of negative ions for the contaminants Cigarette, Incense, and Gasoline. The
figures show that the estimated computational models captured the behavior trend of the
observed concentration, where the x-axis represents time in seconds and the y-axis—the
PM 2.5 data. It can also be observed that the estimation with the SVM method in all cases
ended up reaching negative values, which are not plausible for the actual behavior of the
estimated variable.

To analyze the performance of the different obtained models for the estimation of
PM2.5 in the presence of negative ions, the RMSE (Root Mean Square Error) and the MAE
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(Mean Absolute Error) metrics were used. These prediction errors can help determine how
the expected values deviate from the values observed in the experimentation.

Table 1 summarizes the prediction results obtained by each of the models during the
training and testing phases. According to the evaluation metrics (RMSE and MAE), the
values estimated by the prediction models were very close to the experimental ones. In
all the cases evaluated, the models obtained with the SVM technique reached the highest
levels of error, being the model for the contaminant Incense, the one that presented the
largest amount of error according to the metrics used. On the other hand, the model with
the closest approximation and best response in estimating each pollutant corresponds to
the one obtained using the KNN technique.
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Table 1. Error metrics for the applied computational intelligence methods.

Pollutant Method RMSE Error MAE Error

Cigarette
ANN 0.3957 0.1915
KNN 0.3906 0.1733
SVM 0.4746 0.2594

Incense
ANN 0.4758 0.4511
KNN 0.3900 0.1718
SVM 1.1167 0.5616

Gasoline
ANN 0.4636 0.2426
KNN 0.4615 0.1925
SVM 0.5298 0.4092

3.3. Discussion of Results

The use of computational models based on artificial intelligence (AI) techniques has
been growing. AI is already used today in numerous business and production applications,
including automation, language processing, and productive data analytics. The advantages
of using AI techniques involve better accuracy, human error minimization, and reduced
time for information analysis. However, AI also requires enough data availability and
adequate processing and interpretation of the information. From the experimental study in
this work, we can evidence the potential of these computational models in air purification
tasks and the need for data preprocessing (like normalization) to improve performance.

In this sense, the application of artificial intelligence techniques to predict PM 2.5
concentration has been studied previously in the literature. Ma et al. [44] used neural
network methods compared with traditional approaches to estimate PM 2.5 dispersion in
broad geographical zones, reaching lower RMSE values than the traditional meteorological
approaches. Furthermore, Tian-Cheng et al. [45], Zhu et al. [46], and Zhou et al. [47]
proposed ANN as an optimization method to predict PM2.5 concentration in outdoor
environments. However, those works focus on different approaches and experimental
tests significantly different from the ones reported in this study, making it challenging to
compare the reported accuracy values. According to the data and the procedure performed,
the KNN technique is the best method to represent the reduction in the concentration of PM
2.5 in the presence of negative ions for the cigarette, incense, and gasoline pollutants. The
developed model can quickly and economically predict the effectiveness of the generation
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of negative ions in air decontamination processes and, therefore, guide the development
of effective strategies for better sustainability and air quality management through the
removal of particulate matter.

4. Conclusions

Modeling and predicting the effectiveness of air decontamination methods using
computational algorithms is an useful action for environmental protection. Computational
models were developed to predict the impact of negative ions on the reduction of partic-
ulate material PM 2.5 in the environment by using the data obtained in an experimental
setup. The development of new methodologies using advanced algorithms inspired by
artificial intelligence techniques can help evaluate strategies to improve the quality of the
environment. In the proposed methodology, artificial neural networks (ANN), K-Nearest
Neighbors (KNN), and Vector Support Machine (SVM) algorithms were used to predict
the concentration decrease, and its performance was statistically assessed. The following
conclusions can be drawn:

The present study explored alternative artificial intelligence methods to predict the re-
duction in particulate matter PM 2.5 from experimental data from a test setup in a 6400 cm3

container. The proposed experimental design allowed obtaining the data to implement
artificial intelligence models to predict the effects of negative ions in the reduction of PM
2.5 generated by contaminants such as cigarettes, incense, and gasoline.

Secondly, computational models can be developed by using the Artificial Neural
Networks (ANN), the K-Nearest Neighbors (KNN) and the Support Vector Machine (SVM)
to predict the reduction of PM 2.5 concentration in the air. Remarkably, the prediction
values were very close to the observation values for the different methods and contaminants.
The prediction results with the KNN technique were superior to those generated from
ANN and SVM, for both error metrics of RMSE and MAE.

In addition, this research confirms that negative ions are an effective method and
a promising option for improving environmental quality, which can be implemented to
reduce pollution due to the presence of 2.5 micron particulate matter in the air. The
reduction times of around five minutes for the different contaminants are consistent with
those reported in literature for enclosed spaces. The models developed can be implemented
to predict the efficiency of strategies to improve air quality in closed spaces, contributing
to environmental sustainability. The robustness and efficiency of the proposed methods for
predicting the effectiveness of negative ions in air decontamination can be examined in
future work. Additionally, other future work could involve the implementation of these
methods in open-space environments.
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