Dispositivo inteligente de emulación de sensores de CO2 de alto costo para aplicaciones ambientales
Loading...
Date
2024
Journal Title
Journal ISSN
Volume Title
Publisher
Institución Universitaria Pascual Bravo
Abstract
Este proyecto propone el diseño y desarrollo de un dispositivo que emule la funcionalidad de sensores de dióxido de carbono (CO₂) de alto costo, utilizando sensores económicos. La problemática identificada radica en el alto costo de los equipos de medición de precisión, lo que limita su uso en aplicaciones ambientales de bajo presupuesto. El propósito del dispositivo es mejorar la accesibilidad a datos precisos mediante el uso de sensores de bajo costo calibrados con redes neuronales.
La metodología se centró en la construcción de un sistema experimental que incluye sensores económicos y de referencia, un Arduino UNO, y la implementación de redes neuronales que ajustan las mediciones para simular la precisión de los equipos avanzados. Se diseñó una cápsula de pruebas para inyectar CO₂ en un entorno controlado y registrar los datos generados. Los resultados demostraron que, tras el entrenamiento de las redes neuronales, los sensores económicos alcanzaron niveles de precisión cercanos a los sensores de alto costo.
Se concluye que la integración de sensores económicos con algoritmos de inteligencia artificial puede democratizar el acceso a tecnologías de monitoreo ambiental, abriendo la posibilidad de implementar redes de monitoreo en regiones con recursos limitados. Como trabajos futuros, se plantea la optimización del modelo neuronal y la expansión del sistema a otros gases contaminantes.
-- Abstract This project aims to design and develop a smart device capable of emulating the functionality of high-cost carbon dioxide (CO₂) sensors using low-cost alternatives. The identified problem is the limited accessibility to precise measurement devices due to their high cost, restricting their use in low-budget environmental applications. The device’s purpose is to provide accurate data through low-cost sensors calibrated with neural networks. The methodology involved constructing an experimental setup integrating low-cost and reference sensors, an Arduino UNO, and neural networks to adjust the readings to emulate high-precision equipment. A test capsule was designed to inject CO₂ in a controlled environment for data collection. The results revealed that, after neural network training, the low-cost sensors. The project concludes that combining low-cost sensors with artificial intelligence algorithms can democratize access to environmental monitoring technologies, enabling their use in resource-constrained regions. Future work includes optimizing the neural network model and extending the system to other pollutant gases.
-- Abstract This project aims to design and develop a smart device capable of emulating the functionality of high-cost carbon dioxide (CO₂) sensors using low-cost alternatives. The identified problem is the limited accessibility to precise measurement devices due to their high cost, restricting their use in low-budget environmental applications. The device’s purpose is to provide accurate data through low-cost sensors calibrated with neural networks. The methodology involved constructing an experimental setup integrating low-cost and reference sensors, an Arduino UNO, and neural networks to adjust the readings to emulate high-precision equipment. A test capsule was designed to inject CO₂ in a controlled environment for data collection. The results revealed that, after neural network training, the low-cost sensors. The project concludes that combining low-cost sensors with artificial intelligence algorithms can democratize access to environmental monitoring technologies, enabling their use in resource-constrained regions. Future work includes optimizing the neural network model and extending the system to other pollutant gases.